The simplest situation for a geologist is a "layer cake" succession of sedimentary or extrusive igneous rock units arranged in nearly horizontal layers.

paleontology dating fossils-89

his document discusses the way radiometric dating and stratigraphic principles are used to establish the conventional geological time scale.

It is not about the theory behind radiometric dating methods, it is about their , and it therefore assumes the reader has some familiarity with the technique already (refer to "Other Sources" for more information).

Much of the Earth's geology consists of successional layers of different rock types, piled one on top of another.

The most common rocks observed in this form are sedimentary rocks (derived from what were formerly sediments), and extrusive igneous rocks (e.g., lavas, volcanic ash, and other formerly molten rocks extruded onto the Earth's surface).

However, note that because of the "principle of cross-cutting relationships", careful examination of the contact between the cave infill and the surrounding rock will reveal the true relative age relationships, as will the "principle of inclusion" if fragments of the surrounding rock are found within the infill.

Cave deposits also often have distinctive structures of their own (e.g., spelothems like stalactites and stalagmites), so it is not likely that someone could mistake them for a successional sequence of rock units. Each of them is a testable hypothesis about the relationships between rock units and their characteristics.

Many other indicators are commonly present, including ones that can even tell you the angle of the depositional surface at the time ("geopetal structures"), "assuming" that gravity was "down" at the time, which isn't much of an assumption :-).

In more complicated situations, like in a mountain belt, there are often faults, folds, and other structural complications that have deformed and "chopped up" the original stratigraphy.

Geochronologists do not claim that radiometric dating is foolproof (no scientific method is), but it does work reliably for most samples.

It is these highly consistent and reliable samples, rather than the tricky ones, that have to be falsified for "young Earth" theories to have any scientific plausibility, not to mention the need to falsify huge amounts of evidence from other techniques.

The example used here contrasts sharply with the way conventional scientific dating methods are characterized by some critics (for example, refer to discussion in "Common Creationist Criticisms of Mainstream Dating Methods" in the Age of the Earth FAQ and Isochron Dating FAQ).